Chemical Equilibria

General representation

$$
\mathrm{a} \mathbf{A}+\mathrm{b} \mathbf{B} \rightleftarrows \mathrm{c} \mathbf{C}+\mathrm{d} \mathbf{D}
$$

Where uppercase letters are chemical species and lowercase letters are coefficients (i.e. \# of atoms or moles)

True Thermodynamic

Equilibrium Constant

$$
K^{0}=\frac{\left(a_{C}\right)^{c}\left(a_{D}\right)^{d}}{\left(a_{A}\right)^{a}\left(a_{B}\right)^{b}}
$$

For

$$
\mathrm{a} \mathbf{A}+\mathrm{bB} \longleftrightarrow \mathrm{c} \mathbf{C}+\mathrm{d} \mathbf{D}
$$

\mathbf{K}^{0} Defined for standard conditions of $25^{\circ} \mathrm{C}$, 1 atm pressure and $\mathrm{I}=0$ (infinite dilution)

Equilibrium Constant

$$
K=\frac{[C]^{c}[D]^{d}}{[A]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

where [] = concentration, usually molar

Many types of K's
(equilibrium constants)
K_{a} for acid dissociation
K_{b} for base hydrolysis
K_{w} for water auto ionization
$\mathrm{K}_{\text {sp }}$ for solubility product
K_{f} for a formation constant
$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$, etc. for stepwise formation constants
$\beta_{1}, \beta_{2}, \beta_{3}$, etc. for overall formation constants

Solubility Equilibria

$$
\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \longleftrightarrow \mathrm{BaSO}_{4(\mathrm{~s})}
$$

or by convention

$$
\mathrm{BaSO}_{4(\mathrm{~s})} \longleftrightarrow \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}
$$

We can write an equilibrium constant for rxn

Solubility Product

 (equilibrium constant)$$
\mathrm{K}_{\mathrm{sp}}=\frac{\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{1}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]
$$

$a_{\mathrm{Ba}} \quad \mathrm{a}_{\mathrm{SO} 4}$

activity of solid is defined as $=1$

Solubility Calculated

Solubility (S) is the concentration of individual ions generated from an insoluble compound

$$
\begin{gathered}
\mathrm{BaSO}_{4(\mathrm{~s})} \longleftrightarrow \mathrm{Ba}_{(\mathrm{aq})}^{2+}+\mathrm{SO}_{4}^{2-}{ }_{(\mathrm{aq})} \\
\mathrm{S}=\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{SO}_{4}^{2-}\right]
\end{gathered}
$$

Solubility Calculation (continued)

Given $\quad \mathrm{K}_{\mathrm{SP}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]=2.0 \times 10^{-10}$

Then $\mathrm{S}=\sqrt{\mathrm{K}_{\mathrm{SP}}}=\sqrt{2.0 \times 10^{-10}}=1.4 \times 10^{-5} \mathrm{M}$

So $\quad \mathrm{S}=\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{SO}_{4}{ }^{2-}\right]=1.4 \times 10^{-5} \mathrm{M}$

Activity Correction

$\mathrm{a}_{\mathrm{Ba}} \mathrm{a}_{\mathrm{SO} 4}$
 $K_{\text {SP }}=------------=a_{\mathrm{Ba}} \mathrm{a}_{\mathrm{SO} 4}$

Since
$\mathrm{a}_{\mathrm{Ba}}=\gamma_{\mathrm{Ba}}\left[\mathrm{Ba}^{2+}\right] \& \mathrm{a}_{\mathrm{SO} 4}=\gamma_{\mathrm{SO} 4}\left[\mathrm{SO}_{4}{ }^{2-}\right]$
Substituting
$\mathrm{K}_{\mathrm{SP}}=\mathrm{a}_{\mathrm{Ba}} \mathrm{a}_{\mathrm{SO} 4}=\gamma_{\mathrm{Ba}}\left[\mathrm{Ba}^{2+}\right] \gamma_{\mathrm{SO} 4}\left[\mathrm{SO}_{4}{ }^{2-}\right]$

Solubility Calculation (completed)

Since

$$
\mathrm{K}_{\mathrm{SP}}=\gamma_{\mathrm{Ba}}\left[\mathrm{Ba}^{2+}\right] \gamma_{\mathrm{SO} 4}\left[\mathrm{SO}_{4}^{2-}\right] \& \quad \gamma_{\mathrm{Ba}}=\gamma_{\mathrm{SO} 4}
$$

Then

To determine solubility of BaSO_{4} in a solution containing other ions (as in SW), you must calculate the activity coefficient (γ)

Two ways to correct for activity

1) Correct each ion as discussed
$\mathrm{K}_{\mathrm{SP}}=\mathrm{a}_{\mathrm{Ba}} \mathrm{a}_{\mathrm{SO} 4}=\gamma_{\mathrm{Ba}}\left[\mathrm{Ba}^{2+}\right] \gamma_{\mathrm{SO} 4}\left[\mathrm{SO}_{4}{ }^{2-}\right]$
2) Correct the equilibrium constant K

$$
\mathrm{K}^{\prime}=\frac{\mathrm{K}_{\mathrm{SP}}}{------} \gamma^{2}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]
$$

Common Ion Effect

In seawater the total concentration of sulfate
is 2.86×10^{-2} moles $/ \mathrm{kg} \rightarrow$ must use here
$\mathrm{K}_{\mathrm{SP}}=\mathrm{a}_{\mathrm{Ba}} \mathrm{a}_{\mathrm{SO} 4}=\gamma_{\mathrm{Ba}}\left[\mathrm{Ba}^{2+}\right] \gamma_{\mathrm{SO} 4}\left[\mathrm{SO}_{4}^{2-}\right]$

$$
\mathrm{K}^{\prime}=\frac{\mathrm{K}_{\mathrm{SP}}}{------} \gamma^{2}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]
$$

Water Hydrolysis
(very important)

$$
\mathrm{H}_{2} \mathrm{O} \longmapsto \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Applying same rules for K expressions

$$
\mathrm{K}_{\mathrm{w}}=\frac{\mathrm{a}_{\mathrm{H}+} \mathrm{a}_{\mathrm{OH}-}}{1}=a_{\mathrm{H}+} a_{\mathrm{OH}-}
$$

Where $\mathrm{H}_{2} \mathrm{O}$ (the solvent) is assigned activity $=1$

Remember pH

pH is defined as the negative
logarithm of the hydrogen ion activity

$$
\mathrm{pH}=-\log \mathbf{a}_{\mathrm{H}^{+}}
$$

Given the numerical value $\mathbf{K}_{\mathbf{w}}=\mathbf{1} \times \mathbf{1 0}^{-14}$

$$
\& \mathbf{K}_{\mathbf{w}}=\mathbf{a}_{\mathbf{H}+} \mathbf{a}_{\mathbf{O H}-} \text { then we can }
$$

always calculate OH^{-}from the pH

pH Examples

At neutral $\mathrm{pH} \quad \mathbf{a}_{\mathbf{H}+}=\mathbf{a}_{\mathbf{O H}-}$ and
$\mathbf{a}_{\mathbf{H}+}=\sqrt{\mathbf{K}_{\mathbf{w}}}=\mathbf{1 \times 1 0} \mathbf{1 0}^{-7}=\mathbf{p H} 7.00$
At seawater pH (e.g., 8.2)

$$
\mathbf{a}_{\mathrm{H}+}=1 \times 10^{-8.2}=6.31 \times 10^{-9} \mathrm{M}
$$

$\mathrm{K}_{\mathrm{w}} \quad 1 \times 10^{-14}$
$\mathbf{a}_{\mathbf{O H}-}=------=--------=1.58 \times 10^{-6} \mathrm{M}$ $\mathbf{a}_{\mathbf{H}+} \quad 6.31 \times 10^{-9}$

Hydronium Ion

Water actually hydrolyses to form a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$rather than the lone proton $\left(\mathrm{H}^{+}\right)$
(Once again an ion-water interaction akin to those discussed previously)

For the sake of simplicity, we will refer to this species as \mathbf{H}^{+}which is common practice

A Note on Strong \& Weak Electrolytes
\# Salts, Acids \& Bases are all ionic compounds that dissociate (i.e., form ions) in water either partially or completely
\# Complete dissociation $=$ a strong electrolyte $\mathrm{NaCl} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{ } \mathrm{Na}^{+}+\mathrm{Cl}^{-}$no equilibrium
\# Partial dissociation = a weak electrolyte

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} & \mathrm{K}_{\mathrm{a} 1} \\
\mathrm{HCO}_{3}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} & \mathrm{K}_{\mathrm{a} 2}
\end{array}
$$

Two step equilibrium $=$ forward $\&$ back reactions

Acid-Base Equilibria

Fictitious Weak Acid (HA)

$$
\begin{gathered}
\mathrm{HA} \longrightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{A}-]}{-------} \text { or } \\
\mathbf{a}_{\mathbf{H}^{+}} \mathbf{a}_{\mathbf{a}^{-}} \\
\mathbf{a}_{\mathbf{H A}}
\end{gathered}
$$

The smaller the K_{a} the weaker the acid
Strong acids have no K_{a} it approaches infinity

Acid-Base Equilibria
Fictitious Weak Base (B)
Capable of accepting a proton $\left(\mathrm{H}^{+}\right)$

$$
\begin{array}{ccc}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{b}}= & {\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]} \\
----------\mathbf{B H}^{+} \mathbf{a}_{\mathbf{O H}^{-}} & \text {or } & \mathbf{a}_{\mathbf{B}}
\end{array}
$$

The smaller the K_{b} the weaker the base
Strong bases have no K_{b} it approaches infinity

Ion Pair or Complex Formation Equilibria

Dozens of Ion Pairs form in SW \& even more complexes - deal with them the same way

$$
\begin{gathered}
\mathrm{Mg}_{(\mathrm{aq})}^{2+}+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{f}}=\underset{\mathrm{MgSO}_{4(\mathrm{aq})}}{ }=\underset{\mathrm{MgSO}_{4}}{ } \\
\mathrm{a}_{\mathrm{Mg}} \mathrm{a}_{\mathrm{SO} 4}
\end{gathered}
$$

Larger $\mathrm{K}_{\mathrm{f}}=$ stronger formation - reaction

Typical Problem in SW Find Various Forms or Species

Given total concentration data for
certain constituents in SW, find \% of species
Example:If total Mg is $\mathbf{C}_{\mathbf{M g}}=\mathbf{5 . 2 8} \times 10^{-2} \mathrm{~mol} / \mathrm{kg}$ and total SO_{4} is $\mathbf{C}_{\mathrm{SO} 4}=\mathbf{2 . 8 2} \times \mathbf{1 0}^{-\mathbf{2}} \mathrm{mol} / \mathrm{kg}$
knowing that

$$
\mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \longleftrightarrow \mathrm{MgSO}_{4(\mathrm{aq})}
$$

and the value of the K_{f} or $\mathrm{K}_{\mathrm{MgSO}_{4}}=\mathbf{2 . 2 9 \times 1 0} \mathbf{~ 2}$

Steps in the Manual Solution of Simple Equilibrium Problems

1) Start with a recipe: $\mathbf{C}_{\mathbf{M g}}=\mathbf{5 . 2 8} \times \mathbf{1 0}^{-2} \mathrm{~mol} / \mathrm{kg}$

$$
\mathrm{C}_{\mathrm{SO} 4}=2.82 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}
$$

2) List the species: $\mathrm{Mg}^{2+}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{MgSO}_{4}$
3) List reaction(s): $\mathrm{Mg}^{2+}+\mathrm{SO}_{4}{ }^{2-} \longleftrightarrow \mathrm{MgSO}_{4}$
4) Write Mass Balance equations:
$\mathrm{C}_{\mathrm{Mg}}=\left[\mathrm{Mg}^{2+}\right]+\left[\mathrm{MgSO}_{4}\right]=5.28 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}$
$\mathrm{C}_{\mathrm{SO} 4}=\left[\mathrm{SO}_{4}{ }^{2-}\right]+\left[\mathrm{MgSO}_{4}\right]=2.82 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}$

Steps in the Manual Solution of Simple Equilibrium Problems

5) Write a Charge Balance equation:

$$
\left.\Sigma \mathrm{Z}_{\mathrm{i}+} \mathrm{i}^{+}\right]=\Sigma \mathrm{Z}_{\mathrm{i}-}\left[\mathrm{i}^{-}\right]
$$

6) Write equilibrium constant expression(s):

$$
\mathrm{K}_{\mathrm{f}}=\underset{\mathrm{a}_{\mathrm{Mg}} \mathrm{a}_{\mathrm{SO}_{4}}}{\mathrm{a}_{\mathrm{MgSO}_{4}}} \text { or } \quad \underset{\left[\mathrm{MgSO}_{4}\right]}{\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}
$$

There are 3 species or 3 unknown concentrations
There are also 3 equations (actually 4) to solve

We can solve the 3 equations simultaneously to get an answer

Solve for free Mg concentration first $=\left[\mathbf{M g}^{\mathbf{2 +}}\right]$
Rearrange the mass balance equations:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{Mg}}=\left[\mathrm{Mg}^{2+}\right]+\left[\mathrm{MgSO}_{4}\right] \quad \text { rearranges } \\
& \text { to give } \quad\left[\mathbf{M g S O}_{\mathbf{4}}\right]=\mathbf{C}_{\mathbf{M g}}-\left[\mathbf{M g}^{2+}\right] \\
& \mathrm{C}_{\mathrm{SO} 4}=\left[\mathrm{SO}_{4}{ }^{2-}\right]+\left[\mathrm{MgSO}_{4}\right] \quad \text { rearranges } \\
& \text { giving } \quad\left[\mathbf{S O}_{4}{ }^{2-}\right]=\mathbf{C}_{\mathbf{S O}_{4}}-\left[\mathbf{M g S O}_{4}\right]
\end{aligned}
$$

We must also substitute the 1 st into the 2 nd

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{Mg}}=\left[\mathrm{Mg}^{2+}\right]+\left[\mathrm{MgSO}_{4}\right] \quad \text { rearranges } \\
& \text { to give } \quad\left[\mathbf{M g S O}_{\mathbf{4}}\right]=\mathbf{C}_{\mathbf{M g}}-\left[\mathbf{M g}^{2+}\right] \\
& \mathrm{C}_{\mathrm{SO} 4}=\left[\mathrm{SO}_{4}{ }^{2-}\right]+\left[\mathrm{MgSO}_{4}\right] \quad \text { rearranges } \\
& \text { giving } \\
& {\left[\mathbf{S O}_{4}{ }^{2-}\right]=\mathbf{C}_{\mathbf{S O}_{4}}-\left[\mathbf{M g S O}_{\mathbf{4}}\right]}
\end{aligned}
$$

Substituting the $1^{\text {st }}$ into the $2^{\text {nd }}$ for $\left[\mathrm{MgSO}_{4}\right]$
Gives $\left[\mathbf{S O}_{4}{ }^{2-}\right]=\mathbf{C}_{\mathrm{SO}_{4}}-\left(\mathbf{C}_{\mathbf{M g}}-\left[\mathbf{M g}^{2+}\right]\right)$
Now we can
Substitute into K

$$
\mathbf{K}_{\mathrm{f}}=\frac{\left[\mathrm{MgSO}_{4}\right]}{\left[\mathbf{M g}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]}
$$

Our resulting equation looks like

$$
\mathrm{K}_{\mathrm{MgSO} 4}=\frac{\mathbf{C}_{\mathbf{M g}}-\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Mg}^{2+}\right]\left(\mathrm{C}_{\mathrm{SO}_{4}}-\left(\mathrm{C}_{\mathrm{Mg}}-\left[\mathbf{M g}^{2+}\right]\right)\right)}
$$

Be careful of signs in denomenator

$$
\mathbf{K}_{\mathrm{MgSO} 4}=\frac{\mathbf{C}_{\mathbf{M g}}-\left[\mathbf{M g}^{2+}\right]}{\left[\mathbf{M g}^{2+}\right]\left(\mathrm{C}_{\mathrm{SO}_{4}}-\mathbf{C}_{\mathrm{Mg}}+\left[\mathbf{M g}^{2+}\right]\right)}
$$

Cast in the form of a quadratic
$\mathrm{K}\left[\mathrm{Mg}^{2+}\right] \mathrm{C}_{\mathrm{SO}_{4}}-\mathrm{K}\left[\mathrm{Mg}^{2+}\right] \mathrm{C}_{\mathrm{Mg}}+\mathrm{K}\left[\mathrm{Mg}^{2+}\right]^{2}=\mathbf{C}_{\mathrm{Mg}}-\left[\mathrm{Mg}^{2+}\right]$
Set equal to zero and solve with the quadratic formula

Equation from previous slide
$\mathrm{K}\left[\mathrm{Mg}^{2+}\right] \mathrm{C}_{\mathrm{SO}_{4}}-\mathrm{K}\left[\mathrm{Mg}^{2+}\right] \mathrm{C}_{\mathrm{Mg}}+\mathrm{K}\left[\mathbf{M g}^{\mathbf{2 +}}\right]^{\mathbf{2}}=\mathrm{C}_{\mathrm{Mg}}-\left[\mathrm{Mg}^{2+}\right]$
Set equal to $0 \&$ rearrange in form for quadratic formula

$$
\mathbf{K}\left[\mathbf{M g}^{2+}\right]^{2}+\mathbf{K}\left[\mathbf{M g}^{2+}\right] \mathrm{C}_{\mathrm{SO}_{4}}-\mathrm{K}\left[\mathbf{M g}^{2+}\right] \mathrm{C}_{\mathbf{M g}}+\left[\mathbf{M g}^{2+}\right]-\mathrm{C}_{\mathbf{M g}}=0
$$

Gather terms

$$
\mathrm{K}\left[\mathrm{Mg}^{2+}\right]^{2}+\left(\mathrm{KC}_{\mathrm{SO}_{4}}-\mathrm{KC}_{\mathbf{M g}}+1\right)\left[\mathbf{M g}^{2+}\right]-\mathrm{C}_{\mathrm{Mg}}=0
$$

Remember the quadratic formula ?

Equation from previous slide

$$
\mathrm{K}\left[\mathrm{Mg}^{2+}\right]^{2}+\left(\mathrm{KC}_{\mathrm{SO}_{4}}-\mathrm{KC}_{\mathbf{M g}}+1\right)\left[\mathbf{M g}^{2+}\right]-\mathrm{C}_{\mathrm{Mg}}=0
$$

Quadratic formula

Solve for \mathbf{x} which for us is $\left[\mathbf{M g}^{\mathbf{2 +}}\right]$ where

$$
\mathbf{a}=\mathbf{K}
$$

$$
\mathrm{b}=\left(\mathrm{KC}_{\mathrm{SO}_{4}}-\mathrm{KC}_{\mathrm{Mg}}+1\right)
$$

$$
c=-C_{M g}
$$

Solving this problem with the quadratic formula And substituting in the known values for:
$\mathbf{K}_{\mathrm{f}}{ }^{\prime}$ which equals $\mathbf{K}_{\mathrm{f}} \boldsymbol{\gamma}^{\mathbf{2}}$
Where $K_{\mathrm{f}}=\mathrm{K}_{\mathrm{MgSo}_{4}}=\mathbf{2 . 2 9 \times 1 0 ^ { 2 }}$ and $\boldsymbol{\gamma}=\mathbf{0 . 2 3}$
$\mathrm{C}_{\mathrm{Mg}}=5.28 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}$
$\mathrm{C}_{\mathrm{SO}_{4}}=2.82 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}$
The answer is: $\quad \mathrm{x}=\left[\mathbf{M g}^{\mathbf{2}}\right]=4.35 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}$
Since $\mathbf{C}_{\mathbf{M g}}=\mathbf{5 . 2 8 \times 1 0 ^ { - 2 }} \mathbf{m o l} / \mathrm{kg}$ then $\left[\mathbf{M g}^{\mathbf{2}}\right]=\mathbf{8 2} \%$

Activity Coefficient

At typical ionic strengths for $\mathrm{SW} \mathbf{I}=\mathbf{0 . 5}$ to $\mathbf{0 . 7}$
From Davies Equation Mg^{2+} activity coefficient

$$
\ln \gamma=-\mathbf{A} \mathbf{Z}^{2}\left[\mathbf{I}^{0.5} /\left(\mathbf{1}+\mathbf{I}^{0.5}\right)-0.2 \mathrm{I}\right]
$$

If $\mathrm{Z}=2 \& \mathrm{~A}=1.17$ then $\ln \gamma=-1.47 \& \gamma=0.23$

Calculate All Species

Given $\mathbf{C}_{\mathbf{M g}}=\mathbf{5 . 2 8} \times \mathbf{1 0}^{-2} \mathbf{~ m o l} / \mathrm{kg}$ and $\mathrm{C}_{\mathrm{SO}_{4}}=2.82 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}$ We calculated $\left[\mathbf{M g}^{\mathbf{2}}\right]=\mathbf{4 . 3 5} \times \mathbf{1 0}^{-\mathbf{2}} \mathrm{mol} / \mathrm{kg}$ or $\mathbf{8 2} \%$ By difference $\left[\mathbf{M g S O}_{4}\right]=\mathbf{9 . 3 0} \times 10^{-\mathbf{3}} \mathrm{mol} / \mathrm{kg}$ or $\mathbf{1 8} \%$ We can likewise calculate [$\mathrm{SO}_{4}{ }^{2-}$] concentration \& \% $\mathrm{C}_{\mathrm{SO}_{4}}-\left[\mathrm{MgSO}_{4}\right]=\left[\mathrm{SO}_{4}{ }^{2-}\right]=1.89 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}$

Problems

\# Went through a moderately difficult calculation \& only calculated species for 1 reaction in SW
\# If considered more complicated equilibria where several reactions were going on, the math would quickly get out of hand
\# Didn't consider any other reactions involving Mg or SO_{4} that might influence our results

Other Problems

\# Equilibrium constants can vary as much as 5\% depending on the source
\# Concentration data vary as well
\# Activity corrections can also vary depending on the method used
\# We only considered activity corrections for charged species, while neutral species may also have $\boldsymbol{\gamma}$'s that are non unity (e.g., MgSO_{4})

Problems Mentioned

\# Only 1 reaction, 1 set of species, simple equilibrium
\# Didn't consider any other reactions involving Mg or SO_{4} that might influence our results

Other reactions influence amount of MgSO_{4} produced

Must Consider Other Reactions
Beside $\quad \mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \longleftrightarrow \mathrm{MgSO}_{4(\mathrm{aq})}$
There are also

$$
\begin{gathered}
\mathrm{Ca}^{2+}{ }_{(\mathrm{qq})}+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \\
\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \longleftrightarrow \mathrm{CaSO}_{4(\mathrm{aq})} \\
\mathrm{K}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \\
\mathrm{NaSO}_{4}{ }^{(\mathrm{aqq})} \\
\mathrm{KSO}_{4}^{-}{ }_{(\mathrm{aq})}
\end{gathered}
$$

and

$$
\mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{2-}{ }_{(\mathrm{aq})} \longleftrightarrow \mathrm{MgCO}_{3(\mathrm{aq})}
$$

as well as others

Several Questions to Ponder

1) Based on the knowledge that there are other competing reactions in SW, is our calculation accurate? (82% free Mg^{2+} ?)
2) How do we know what other reactions are going on in SW that we should consider?
3) How do we include all the other equilibrium reactions that we might consider important?
4) How do we deal with the increased complexity of the mathematics?
5) Why did I take this course?

Answers to Question \#1

Based on the knowledge that there are other competing reactions in SW, is our calculation accurate? (82% free Mg^{2+} ?)
The calculation is only an estimate because we did not consider the formation of other species

their influence on the amount of MgSO_{4} produced

Answers to Question \#2

How do we know what other reactions are going on in SW that we should consider?

We will largely rely on the literature for known reactions in SW (e.g., books \& papers such as the handout provided this week).
Chemical Intuition also helps

Answers to Question \#3

How do we include all the other equilibrium reactions that we might consider important?

Using our manual approach to solving equilibrium problems, we would have to expand our mass balance equations as well as add additional equilibrium constant expressions
The number of species for which the concentration is unknown \& the number of equations grows rapidly as we add equilibria.

Answers to Question \#4

How do we deal with the increased complexity of the mathematics?

Solving 5 or more equations simultaneously can only be handled in two ways:

1) Assumptions or approximations can be made to simplify the equations to something more manageable
2) Computer programs designed to solve ionic equilibrium problems can be used

Computer programs MINEQL+ - we will use this exclusively
http://mineql.software.informer.com/4.6/
MINTEQA2 - EPA DOS version of MINEQL
http://www2.epa.gov/exposure-assessment-models/minteqa2
GEOCHEM-EZ - geochemical modeling software http://www.plantmineralnutrition.net/software/geochem ez/ Visual MINTEQ - user friendly MINTEQA2
http://vminteq.lwr.kth.se/
PHREEQC - USGS modeling software wwwbrr.cr.usgs.gov/projects/GWC coupled/phreeqc/
WinHumicV - Includes humic binding model
https://www.seed.abe.kth.se/om/avd/lwr/grupper/vara-
datorprogram/winhumicv-for-win95-98-nt-1.635600

Handout

Marine Chemistry, 21 (1987) 101-116
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands

SPECIATION OF METALS IN THE OCEANS. I. INORGANIC COMPLEXES IN SEAWATER, AND INFLUENCE OF ADDED CHELATING AGENTS

RAMUNAS J. MOTEKAITIS and Λ RTHUR E. MARTELL*
Department of Chemistry, Texas A\&M University, College Station, TX 77843 (U.S.A.) (Received April 3, 1986; revision accepted January 29, 1987)

Motekaitis \& Martell (1987) Table I

Note molar concentration units (M) \& multiplier

Major and some minor constituents of seawater used in this study

Ion	Concentration, $\mathrm{M} \times 10^{3}$	Trace Element	Concentration, $\mathrm{M} \times 10^{9}$
Na^{+}	479	Mn	4
Mg^{2+}	54.5	Fe	8
Ca^{2+}	10.5	Ni	5
$\mathrm{~K}^{+}$	10.4	Cu	4
Cl^{-}	559	Zn	5
SO_{4}^{2-}	28.9	Cd	0.1
$\mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$	2.35	Hg	0.02
Br^{-}	0.86	Pb	0.05
$\mathrm{~F}^{-}$	0.075	U	14

Motekaitis \& Martell (1987) Table I, Major Ions

Major and some minor constituents of seawater

Concentration, $\mathrm{M} \times 10^{3}$

479
54.5
10.5
10.4

559
28.9
2.35
0.86
0.075

Note: These numbers have been multiplied by 10^{3} or 1000 so they are millimolar (mM) or 479 is really 0.479 M or $4.79 \times 10^{-2} \mathrm{M}$

Motekaitis \& Martell (1987) Table I. Trace Ions

Trace Element

Concentration, $\mathrm{M} \times 10^{9}$

Mn
Fe
Ni
Cu
Zn
Cd
Hg
Pb
U

4
8
5
4
5
0.1
0.02
0.05

14

Note: These numbers have been multiplied by 10^{9} and are nanomolar (nM) or 4 is really
4 nM or
$4 \times 10^{-9} \mathrm{M}$

Motekaitis \& Martell give a long list of species with equilibrium constants

TABLE II Note: Values are $\log \beta$ not K, also $\mathrm{I}(\mu)=0.70$

Log overall stability constants for soluble components of seawater

Species	Log β	Species	$\log \beta$
CaCO_{3}	2.21	FeH_{-2}^{+}	-5.88
CaHCO_{3}^{+}	9.90	FeH_{-4}	-20.76
CaSO_{4}	1.03	$\mathrm{Fe}_{2} \mathrm{H}_{-2}^{4+}$	-3.08
CaF^{+}	0.60	MnHCO_{3}^{+}	10.00
CaH_{-1}^{+}	-12.20	MnSO_{4}	0.80
MgCO_{3}	2.05	MnCl^{+}	-0.20
MgHCO_{2}^{+}	9.80	MnCl_{2}	-0.3
MgSO_{4}	0.90	MnCl_{3}^{-}	-0.50
MgF^{+}	1.30	MnH_{-1}^{+}	-10.80

The difference between $\beta \& \mathrm{~K}$

K is a stepwise formation constant

$$
\begin{array}{ll}
\mathrm{Cd}^{2+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{CdCl}^{+} & \mathrm{K}_{1}=\frac{\left[\mathrm{CdCl}^{+}\right]}{\left[\mathrm{Cd}^{2}+\right][\mathrm{Cl}]}=1.0 \times 10^{2} \\
\mathrm{CdCl}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{CdCl}_{2} \quad \mathrm{~K}_{2}=-\frac{\left[\mathrm{CdCl}_{2}\right]}{\left[\mathrm{CdCl}^{-}\right]\left[\mathrm{Cl}^{-}\right]}=4.0 \times 10^{0}
\end{array}
$$

β is an overall formation constant

$$
\begin{array}{ll}
\mathrm{Cd}^{2+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{CdCl}^{+} & \beta_{1}=--\frac{\left[\mathrm{CdCl}^{+}\right]}{\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{Cl}^{-}\right]}=1.0 \times 10^{2} \\
\mathrm{Cd}^{2+}+2 \mathrm{Cl} \longrightarrow \mathrm{CdCl}_{2} & \beta_{2}=\frac{\left[\mathrm{CdCl}_{2}\right]}{\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{Cl}^{-1}\right]^{2}}=4.0 \times 10^{2}
\end{array}
$$

Notes on β \& K

\# $\quad \mathrm{K}_{1}=\beta_{1} \quad$ (from previous slide)
\# K_{2} is not equal to $\beta_{2} \quad$ (note denominators of each expression)
\#
$\beta_{2}=\mathrm{K}_{1} \times \mathrm{K}_{2}$
$-\left[\mathrm{CdCl}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
$\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{Cl}^{-}\right]$
$\left[\mathrm{CdCl}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
\# $\quad \beta_{3}=K_{1} \times K_{2} \times K_{3} \quad$ (etc.)

Motekaitis \& Martell (1987)
TABLE VII (values expressed as \%)
Seawater speciation in the absence of added ligands at pH 8.1.

Metal ion	Cl^{-}	Br^{-}	F^{-}	SO_{4}^{2-}	$(\mathrm{H}) \mathrm{CO}_{3}^{\mathrm{a}}$	OH^{-}	Uncomplexed
Ca^{2+}			0.01	9.8	0.54		79.0
Mg^{2+}			0.07	8.4	0.45	0.02	91.1
$\mathrm{~K}^{+}$				2.2			97.8
Na^{+}				2.4	0.01		97.6
Mn^{2+}	34.4		0.01	4.4	0.15	0.12	60.9
Cd^{2+}	96.8	0.08		0.3		0.05	2.9
Hg^{2+}	99.9	0.05					
Fe^{3+}				0.2	22.4	73.7	
Cu^{2+}	1.9			0.2	1.85		
Zn^{2+}	41.2	0.02		4.86	0.40	0.47	53.0
$\mathrm{~Pb}^{2+}$	22.32	0.02		0.3	71.9	3.9	1.5
Ni^{2+}	29.6	0.01		3.1		0.67	66.6
UO_{2}^{2+}					100.0		

Computer programs

MINEQL+ - we will use this

exclusively

http://mineql.software.informer.com/4.6/
Program still requires setting up the Equilibrium Problem

- Must list species of interest
- Must have total concentration data for each constituent

Other needed information may include

- Ionic strength
- pH
- $\mathrm{CO}_{2} /$ Carbonate

Steps in the MINEQL+ Solution of Simple Equilibrium Problems

1) Start with a recipe: $\mathbf{C}_{\mathbf{M g}}=\mathbf{5 . 2 8} \times \mathbf{1 0}^{-2} \mathrm{~mol} / \mathrm{kg}$

$$
\mathrm{C}_{\mathrm{SO} 4}=2.82 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}
$$

2) List the species: $\mathrm{Mg}^{2+}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{MgSO}_{4}$
3) Run the program
4) Interpret the results
