Chemical Equilibria

General representation

$$a A + b B \rightleftharpoons c C + d D$$

Where uppercase letters are chemical species and lowercase letters are coefficients (i.e. # of atoms or moles)

True Thermodynamic Equilibrium Constant

$$K^{o} = \frac{(a_{C})^{c} (a_{D})^{d}}{(a_{A})^{a} (a_{B})^{b}}$$

For

$$a A + b B \longrightarrow c C + d D$$

K^o Defined for standard conditions of 25 °C, 1 atm pressure and I = 0 (infinite dilution)

Equilibrium Constant

where [] = concentration, usually molar

Many types of K's (equilibrium constants)

K_a for acid dissociation

K_b for base hydrolysis

K_w for water auto ionization

K_{sp} for solubility product

K_f for a formation constant

K₁, K₂, K₃, etc. for stepwise formation constants

 β_1 , β_2 , β_3 , etc. for overall formation constants

Solubility Equilibria

$$Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow BaSO_{4(s)}$$

or by convention

$$BaSO_{4(s)} \longrightarrow Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

We can write an equilibrium constant for rxn

Solubility Product (equilibrium constant)

$$K_{sp} = \frac{[Ba^{2+}][SO_4^{2-}]}{1}$$

$$a_{Ba} \ a_{SO4}$$
 $K_{sp} = ----- = a_{Ba} \ a_{SO4}$

activity of solid is defined as = 1

Solubility Calculated

Solubility (S) is the concentration of individual ions generated from an insoluble compound

$$BaSO_{4(s)} \longrightarrow Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

$$S = [Ba^{2+}] = [SO_4^{2-}]$$

Solubility Calculation (continued)

Given
$$K_{SP} = [Ba^{2+}][SO_4^{2-}] = 2.0 \times 10^{-10}$$

Then
$$S = \sqrt{K_{SP}} = \sqrt{2.0 \times 10^{-10}} = 1.4 \times 10^{-5} M$$

So
$$S = [Ba^{2+}] = [SO_4^{2-}] = 1.4 \times 10^{-5} M$$

Activity Correction

$$K_{SP} = \frac{a_{Ba} a_{SO4}}{1} = a_{Ba} a_{SO4}$$
Since

$$a_{Ba} = \gamma_{Ba} [Ba^{2+}] \& a_{SO4} = \gamma_{SO4} [SO_4^{2-}]$$

Substituting

$$K_{SP} = a_{Ba}a_{SO4} = \gamma_{Ba} [Ba^{2+}]\gamma_{SO4} [SO_4^{2-}]$$

Solubility Calculation (completed)

Since

$$K_{SP} = \gamma_{Ba} [Ba^{2+}] \gamma_{SO4} [SO_4^{2-}] \& \gamma_{Ba} = \gamma_{SO4}$$

Then

$$S = \sqrt{\frac{K_{SP}}{\gamma^2}}$$

To determine solubility of BaSO₄ in a solution containing other ions (as in SW), you must calculate the activity coefficient (γ)

Two ways to correct for activity

1) Correct each ion as discussed

$$K_{SP} = a_{Ba}a_{SO4} = \gamma_{Ba} [Ba^{2+}]\gamma_{SO4} [SO_4^{2-}]$$

2) Correct the equilibrium constant K

$$K' = \frac{K_{SP}}{\gamma^2} = [Ba^{2+}][SO_4^{2-}]$$

Common Ion Effect

In seawater the total concentration of sulfate is 2.86×10^{-2} moles/kg \rightarrow must use here

$$K_{SP} = a_{Ba} a_{SO4} = \gamma_{Ba} [Ba^{2+}] \gamma_{SO4} [SO_4^{2-}]$$

$$K' = \frac{K_{SP}}{\gamma^2} = [Ba^{2+}][SO_4^{2-}]$$

Water Hydrolysis (very important)

$$H_2O \longrightarrow H^+ + OH^-$$

Applying same rules for K expressions

$$K_{\rm w} = \frac{a_{\rm H^+} \, a_{\rm OH^-}}{1} = a_{\rm H^+} \, a_{\rm OH^-}$$

Where H_2O (the solvent) is assigned activity = 1

Remember pH

pH is defined as the negative

logarithm of the hydrogen ion activity

$$pH = -log a_{H+}$$

Given the numerical value $K_w = 1 \times 10^{-14}$

& $K_w = a_{H+} a_{OH-}$ then we can always calculate OH- from the pH

pH Examples

At neutral pH
$$\mathbf{a}_{H+} = \mathbf{a}_{OH-}$$
 and

$$\mathbf{a_{H+}} = \sqrt{\mathbf{K_w}} = 1 \times 10^{-7} = \text{pH } 7.00$$

At seawater pH (e.g., 8.2)

$$a_{H+} = 1 \times 10^{-8.2} = 6.31 \times 10^{-9} M$$

$$\mathbf{a_{OH-}} = \frac{\mathbf{K_w}}{\mathbf{a_{H+}}} = \frac{1 \times 10^{-14}}{6.31 \times 10^{-9}} = 1.58 \times 10^{-6} \,\mathrm{M}$$

Hydronium Ion

Water actually hydrolyses to form a hydronium ion (H₃O⁺) rather than the lone proton (H⁺)

(Once again an ion-water interaction akin to those discussed previously)

For the sake of simplicity, we will refer to this species as **H**⁺ which is common practice

A Note on Strong& Weak Electrolytes

- Salts, Acids & Bases are all ionic compounds that dissociate (i.e., form ions) in water either partially or completely
- **■** Complete dissociation = a strong electrolyte NaCl $\overrightarrow{H_2O}$ Na⁺ + Cl⁻ no equilibrium
- **■** Partial dissociation = a weak electrolyte

$$H_2CO_3 \longrightarrow H^+ + HCO_3^- \qquad K_{a1}$$

 $HCO_3^- \longrightarrow H^+ + CO_3^{2-} \qquad K_{a2}$

Two step equilibrium = forward & back reactions

Acid-Base Equilibria

Fictitious Weak Acid (HA)

$$HA \longrightarrow H^+ + A^-$$

$$K_{a} = \frac{[H^{+}][A_{-}]}{[HA]}$$
 or $\frac{\mathbf{a_{H}} + \mathbf{a_{A}}}{\mathbf{a_{HA}}}$

The smaller the K_a the weaker the acid Strong acids have no K_a it approaches infinity

Acid-Base Equilibria

Fictitious Weak Base (B)

Capable of accepting a proton (H⁺)

$$B + H2O \longrightarrow BH^{+} + OH^{-}$$

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]} \text{ or } \frac{\mathbf{a_{BH}^{+} + a_{OH}^{-}}}{\mathbf{a_{B}}}$$

The smaller the K_b the weaker the base Strong bases have no K_b it approaches infinity

Ion Pair or Complex Formation Equilibria

Dozens of Ion Pairs form in SW & even more complexes – deal with them the same way

$$Mg^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow MgSO_{4(aq)}$$

$$K_{\rm f} = \frac{a_{MgSO_4}}{a_{Mg}a_{SO4}}$$

Larger K_f = stronger formation – reaction \longrightarrow

Typical Problem in SW Find Various Forms or Species

Given total concentration data for

certain constituents in SW, find % of species

Example:If total Mg is $C_{Mg} = 5.28 \times 10^{-2} \text{ mol/kg}$

and total SO_4 is $C_{SO4} = 2.82 \times 10^{-2}$ mol/kg

knowing that

$$Mg^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow MgSO_{4(aq)}$$

and the value of the K_f or $K_{MgSO_4} = 2.29 \times 10^2$

Steps in the Manual Solution of Simple Equilibrium Problems

- 1) Start with a recipe: $C_{Mg} = 5.28 \times 10^{-2} \text{ mol/kg}$ $C_{SO4} = 2.82 \times 10^{-2} \text{ mol/kg}$
- 2) List the species: Mg^{2+} , SO_4^{2-} , $MgSO_4$
- 3) List reaction(s): $Mg^{2+} + SO_4^{2-} \longrightarrow MgSO_4$
- 4) Write Mass Balance equations:

$$C_{Mg} = [Mg^{2+}] + [MgSO_4] = 5.28 \times 10^{-2} \text{ mol/kg}$$

 $C_{SO4} = [SO_4^{2-}] + [MgSO_4] = 2.82 \times 10^{-2} \text{ mol/kg}$

Steps in the Manual Solution of Simple Equilibrium Problems

5) Write a Charge Balance equation:

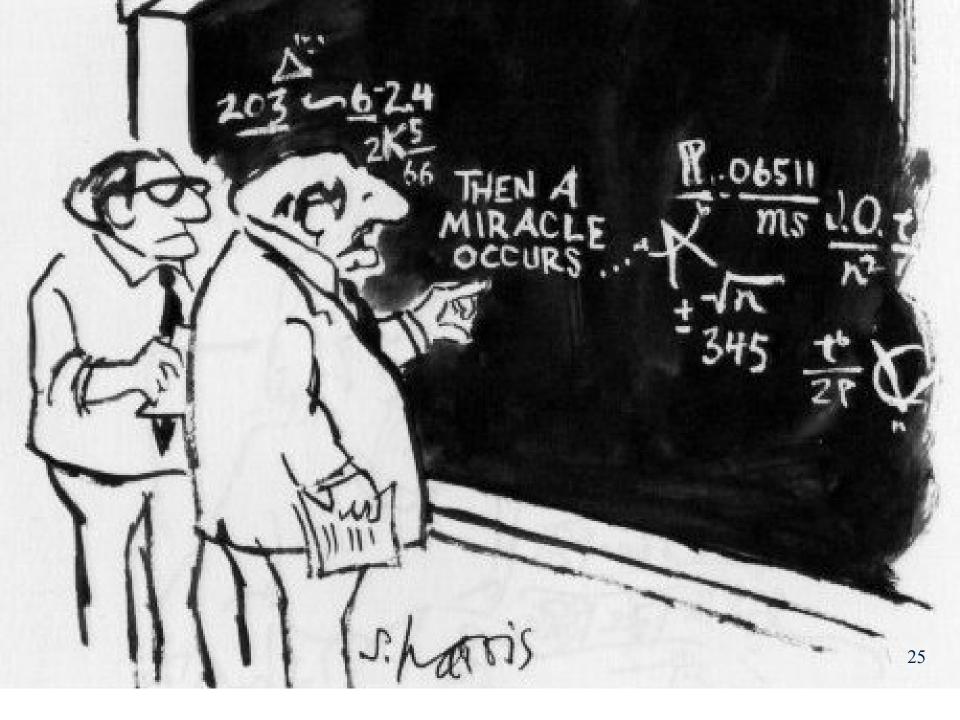
$$\sum Z_{i+}[i^+] = \sum Z_{i-}[i^-]$$

6) Write equilibrium constant expression(s):

$$K_{f} = \frac{a_{MgSO_{4}}}{a_{Mg} a_{SO_{4}}} \text{ or } \frac{[MgSO_{4}]}{[Mg^{2+}][SO_{4}^{2-}]}$$

There are 3 species or 3 unknown concentrations

There are also 3 equations (actually 4) to solve 23


We can solve the 3 equations simultaneously to get an answer

Solve for free Mg concentration first = $[Mg^{2+}]$

Rearrange the mass balance equations:

$$C_{Mg} = [Mg^{2+}] + [MgSO_4]$$
 rearranges
to give $[MgSO_4] = C_{Mg} - [Mg^{2+}]$
 $C_{SO4} = [SO_4^{2-}] + [MgSO_4]$ rearranges
giving $[SO_4^{2-}] = C_{SO_4} - [MgSO_4]$

We must also substitute the 1st into the 2nd

$$C_{\text{Mg}} = [\text{Mg}^{2+}] + [\text{Mg}SO_4] \quad \text{rearranges}$$
to give
$$[\text{Mg}SO_4] = C_{\text{Mg}} - [\text{Mg}^{2+}]$$

$$C_{\text{SO4}} = [\text{SO}_4^{2-}] + [\text{Mg}SO_4] \quad \text{rearranges}$$
giving
$$[\text{SO}_4^{2-}] = C_{\text{SO}_4} - [\text{Mg}SO_4]$$
Substituting the 1st into the 2nd for [MgSO_4]
Gives
$$[\text{SO}_4^{2-}] = C_{\text{SO}_4} - (C_{\text{Mg}} - [\text{Mg}^{2+}])$$
Now we can
$$K_f = \frac{[\text{Mg}SO_4]}{[\text{Mg}^{2+}] [\text{SO}_4^{2-}]}$$

Our resulting equation looks like

$$K_{MgSO4} = \frac{C_{Mg} - [Mg^{2+}]}{[Mg^{2+}] (C_{SO_4} - (C_{Mg} - [Mg^{2+}]))}$$

Be careful of signs in denomenator

$$K_{MgSO4} = \frac{C_{Mg} - [Mg^{2+}]}{[Mg^{2+}] (C_{SO_4} - C_{Mg} + [Mg^{2+}])}$$

Cast in the form of a quadratic

$$K[Mg^{2+}]C_{SO_4} - K[Mg^{2+}]C_{Mg} + K[Mg^{2+}]^2 = C_{Mg} - [Mg^{2+}]$$

Set equal to zero and solve with the quadratic formula

Equation from previous slide

$$K[Mg^{2+}]C_{SO_4} - K[Mg^{2+}]C_{Mg} + K[Mg^{2+}]^2 = C_{Mg} - [Mg^{2+}]$$

Set equal to 0 & rearrange in form for quadratic formula

$$K[Mg^{2+}]^2 + K[Mg^{2+}]C_{SO_4} - K[Mg^{2+}]C_{Mg} + [Mg^{2+}] - C_{Mg} = 0$$

Gather terms

$$K[Mg^{2+}]^2 + (KC_{SO_4} - KC_{Mg} + 1)[Mg^{2+}] - C_{Mg} = 0$$

Remember the quadratic formula?

Equation from previous slide

$$K[Mg^{2+}]^2 + (KC_{SO_4} - KC_{Mg} + 1)[Mg^{2+}] - C_{Mg} = 0$$

Quadratic formula

$$\mathbf{x} = \frac{-\mathbf{b} + \sqrt{\mathbf{b}^2 - 4 \mathbf{a} \mathbf{c}}}{2 \mathbf{a}}$$

Solve for \mathbf{X} which for us is $[\mathbf{M}\mathbf{g}^{2+}]$ where

$$a = K$$
 $b = (KC_{SO_4} - KC_{Mg} + 1)$ $c = -C_{Mg}$

Solving this problem with the quadratic formula

And substituting in the known values for:

$$K_f$$
 which equals $K_f \gamma^2$

Where
$$K_f = K_{MgSO_4} = 2.29 \times 10^2$$
 and $\gamma = 0.23$

$$C_{Mg} = 5.28 \times 10^{-2} \text{ mol/kg}$$

$$C_{SO_4} = 2.82 \times 10^{-2} \text{ mol/kg}$$

The answer is:
$$x = [Mg^{2+}] = 4.35 \times 10^{-2} \text{ mol/kg}$$

Since
$$C_{Mg} = 5.28 \times 10^{-2} \text{ mol/kg then } [Mg^{2+}] = 82 \%$$

Activity Coefficient

At typical ionic strengths for SW I = 0.5 to 0.7

From Davies Equation Mg²⁺ activity coefficient

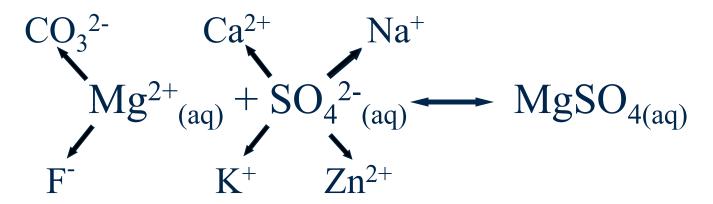
$$\ln \gamma = -A Z^2 [I^{0.5}/(1 + I^{0.5}) - 0.2 I]$$

If
$$Z = 2 \& A = 1.17$$
 then $\ln \gamma = -1.47 \& \gamma = 0.23$

Calculate All Species

Given $C_{Mg} = 5.28 \times 10^{-2} \text{ mol/kg}$ and $C_{SO_4} = 2.82 \times 10^{-2} \text{ mol/kg}$ We calculated $[Mg^{2+}] = 4.35 \times 10^{-2} \text{ mol/kg or } 82 \%$ By difference $[MgSO_4] = 9.30 \times 10^{-3} \text{ mol/kg or } 18 \%$ We can likewise calculate $[SO_4^{2-}]$ concentration & % C_{SO_4} - $[MgSO_4]$ = $[SO_4^{2-}]$ = 1.89 x 10⁻² mol/kg

Problems


- Went through a moderately difficult calculation & only calculated species for 1 reaction in SW
- ★ If considered more complicated equilibria where several reactions were going on, the math would quickly get out of hand
- Didn't consider any other reactions involving Mg or SO₄ that might influence our results

Other Problems

- **≠** Equilibrium constants can vary as much as 5% depending on the source
- **■** Concentration data vary as well
- **★** Activity corrections can also vary depending on the method used
- We only considered activity corrections for charged species, while neutral species may also have γ's that are non unity (e.g., MgSO₄)

Problems Mentioned

- **■** Only 1 reaction, 1 set of species, simple equilibrium
- ➡ Didn't consider any other reactions involving
 Mg or SO₄ that might influence our results

Other reactions influence amount of MgSO₄ produced

Must Consider Other Reactions

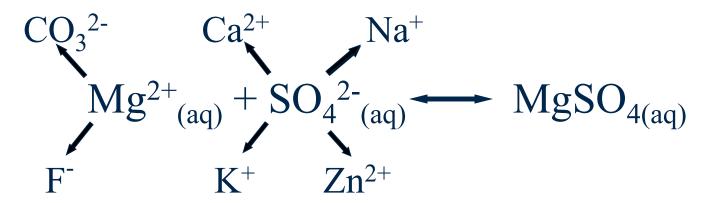
Beside
$$Mg^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow MgSO_{4(aq)}$$

There are also

$$Ca^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow CaSO_{4(aq)}$$
 $Na^{+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow NaSO_4^{-}_{(aq)}$
 $K^{+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow KSO_4^{-}_{(aq)}$

and

$$Mg^{2+}_{(aq)} + CO_3^{2-}_{(aq)} \longrightarrow MgCO_{3(aq)}$$


as well as others

Several Questions to Ponder

- 1) Based on the knowledge that there are other competing reactions in SW, is our calculation accurate? (82 % free Mg²⁺?)
- 2) How do we know what other reactions are going on in SW that we should consider?
- 3) How do we include all the other equilibrium reactions that we might consider important?
- 4) How do we deal with the increased complexity of the mathematics?
- 5) Why did I take this course?

Based on the knowledge that there are other competing reactions in SW, is our calculation accurate? (82 % free Mg²⁺?)

The calculation is only an estimate because we did not consider the formation of other species

their influence on the amount of MgSO₄ produced

How do we know what other reactions are going on in SW that we should consider?

We will largely rely on the literature for known reactions in SW (e.g., books & papers such as the handout provided this week).

Chemical Intuition also helps

How do we include all the other equilibrium reactions that we might consider important?

Using our manual approach to solving equilibrium problems, we would have to expand our mass balance equations as well as add additional equilibrium constant expressions

The number of species for which the concentration is unknown & the number of equations grows rapidly as we add equilibria.

How do we deal with the increased complexity of the mathematics?

Solving 5 or more equations simultaneously can only be handled in two ways:

- 1) Assumptions or approximations can be made to simplify the equations to something more manageable
- 2) Computer programs designed to solve ionic equilibrium problems can be used

Computer programs

MINEQL+- we will use this exclusively

http://mineql.software.informer.com/4.6/

MINTEQA2 – EPA DOS version of MINEQL

http://www2.epa.gov/exposure-assessment-models/minteqa2

GEOCHEM-EZ – geochemical modeling software

http://www.plantmineralnutrition.net/software/geochem_ez/

Visual MINTEQ – user friendly MINTEQA2

http://vminteq.lwr.kth.se/

PHREEQC – USGS modeling software

wwwbrr.cr.usgs.gov/projects/GWC coupled/phreeqc/

WinHumicV – Includes humic binding model

https://www.seed.abe.kth.se/om/avd/lwr/grupper/varadatorprogram/winhumicv-for-win95-98-nt-1.635600

Handout

Marine Chemistry, 21 (1987) 101–116

Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

SPECIATION OF METALS IN THE OCEANS. I. INORGANIC COMPLEXES IN SEAWATER, AND INFLUENCE OF ADDED CHELATING AGENTS

RAMUNAS J. MOTEKAITIS and ARTHUR E. MARTELL*

Department of Chemistry, Texas A&M University, College Station, TX 77843 (U.S.A.)

(Received April 3, 1986; revision accepted January 29, 1987)

Motekaitis & Martell (1987) Table I

Note molar concentration units (M) & multiplier

Major and some minor constituents of seawater used in this study

Ion	Concentration,	Trace	Concentration,	
	$M \times 10^3$	Element	$M \times 10^9$	
Na ⁺ Mg ²⁺ Ca ²⁺ K ⁺	479	Mn	4	
Mg ²⁺	54.5	Fe	8	
Ca ²⁺	10.5	Ni	5	
K ⁺	10.4	Cu	4	
Cl- SO ₄ -	559	Zn	5	
SO ₄ ²⁻	28.9	Cd	0.1	
HCO ₃ , CO ₃ ²	2.35	Hg	9.02	
Br ⁻	0.86	Pb	0.05	
F-	0.075	U	14	

Motekaitis & Martell (1987) Table I, Major Ions

Major and some minor constituents of seawater

Ion	Concentration, M × 10 ³			
Na ⁺	479	Village - company and a second to the second		
Mg ²⁺ Ca ²⁺	54.5	Note: These numbers have		
Ca ²⁺	10.5	been multiplied		
K ⁺	10.4	by 10 ³ or 1000 so they are		
Cl-	559	millimolar (mM)		
SO ₄ ²⁻	28.9	or 479 is really 0.479 M or		
HCO ₃ , CO ₃ ²	2.35	4.79 x 10 ⁻² M		
Br-	0.86			
F-	0.075	45		

Motekaitis & Martell (1987) Table I, Trace Ions

Trace Element	Concents M × 10 ⁹	\$.**
Mn	4	······································
Fe	8	Note: These
Ni	5	numbers hav been multipli
Cu	4	by 10 ⁹ and a
Zn	5	nanomolar (r or 4 is really
Cd	0.1	4 nM or
Hg	9.02	4 x 10 ⁻⁹ M
Pb	0.05	
U	14	

Motekaitis & Martell give a long list of species with equilibrium constants

TABLE II

Note: Values are Log β not K, also I (μ) = 0.70

Log overall stability constants for soluble components of seawater

Species	Logβ	Species	$Log \beta$		
CaCO ₃ 2.21		FeH ⁺ ,	– 5.88		
CaHCO ₃ +	9.90	FeH_	-20.76		
CaSO.	1.03	Fe ₂ H ⁴⁺	- 3.08		
CaF+	0.60	MnHCO,	10.00		
CaH+,	-12.20	MnSO ₄	0.80		
MgCO ₃	2.05	MnCl ⁺	-0.20		
MgHCO ₂ +	9.80	MnCl ₂	-0.3		
MgSO,	0.90	$MnCl_3^-$	-0.50		
MgF ⁺	1.30	MnH_{-1}^{+}	- 10.80 47		

The difference between β & K

K is a stepwise formation constant

$$Cd^{2+} + Cl^{-} \longrightarrow CdCl^{+}$$
 $K_{1} = \frac{[CdCl^{+}]}{[Cd^{2+}][Cl^{-}]} = 1.0 \times 10^{2}$

$$CdCl^{+} + Cl^{-} \longleftrightarrow CdCl_{2}$$
 $K_{2} = \frac{[CdCl_{2}]}{[CdCl^{+}][Cl^{-}]} = 4.0 \times 10^{0}$

β is an overall formation constant

$$Cd^{2+} + Cl^{-} \longrightarrow CdCl^{+}$$
 $\beta_1 = \frac{[CdCl^{+}]}{[Cd^{2+}][Cl^{-}]} = 1.0 \times 10^2$

$$Cd^{2+} + 2 Cl^{-} \longrightarrow CdCl_{2}$$
 $\beta_{2} = \frac{[CdCl_{2}]}{[Cd^{2+}][Cl^{-}]^{2}} = 4.0 \times 10^{2}$

Notes on β & K

$$\mathbf{H}$$
 $\mathbf{K}_1 = \beta_1$ (from previous slide)

$$\beta_2 = K_1 \times K_2$$

$$\beta_2 = \frac{[CdCl_2]}{[Cd^{2+}][Cl^{-}]^2} = \frac{[CdCl^{+}]}{[Cd^{2+}][Cl^{-}]} \times \frac{[CdCl_2]}{[CdCl^{+}][Cl^{-}]}$$

$$\beta_3 = K_1 \times K_2 \times K_3 \quad \text{(etc.)}$$

Motekaitis & Martell (1987) (values expressed as %)

Seawater speciation in the absence of added ligands at pH 8.1.

TABLE VII

Metal ion	Cl-	Br-	F-	SO_4^{2-}	(H)CO ₃ ^a	OH-	Uncomp	olexed
Ca ²⁺			0.01	9.8	0.54		79.0	
Mg^{2+}			0.07	8.4	0.45	0.02	91.1	
K ⁺				2.2			97.8	
Na ⁺				2.4	0.01		97.6	
Mn ²⁺	34.4		0.01	4.4	0.15	0.12	60.9	
Cd^{2+}	96.8	0.08		0.3		0.05	2.9	
Hg ²⁺	99.9	0.05						
Fe ³⁺						1.71		
Cu ²⁺	1.9			0.2	22.4	73.6	1.85	
Zn ²⁺	41.2	0.02		4.86	0.40	0.47	53.0	
Pb ²⁺	22.32	0.02		0.3	71.9	3.9	1.5	
Ni ²⁺	29.6	0.01		3.1		0.67	66.6	
UO_{2}^{2+}					100.0			50

Computer programs

MINEQL+ – we will use this exclusively

http://mineql.software.informer.com/4.6/

Program still requires setting up the Equilibrium Problem

- Must list species of interest
- Must have total concentration data for each constituent
 Other needed information may include
- Ionic strength
- pH
- CO₂/Carbonate

Steps in the MINEQL+ Solution of Simple Equilibrium Problems

- 1) Start with a recipe: $C_{Mg} = 5.28 \times 10^{-2} \text{ mol/kg}$ $C_{SO4} = 2.82 \times 10^{-2} \text{ mol/kg}$
- 2) List the species: Mg²⁺, SO₄²⁻, MgSO₄
- 3) Run the program
- 4) Interpret the results